skip to main content


Search for: All records

Creators/Authors contains: "Cleland, Elsa E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Significant gaps in our understanding of how global change drivers interact to affect the resistance and functioning of microbial communities hinders our ability to model ecosystem responses and feedbacks to co-occurring global stressors. Here, we investigated the effects of extreme drought and exotic plants, two of the most significant threats to Mediterranean-type ecosystems, on soil microbial community composition and carbon metabolic genes within a four-year field rainfall manipulation experiment. We combined measurements of bulk microbial and soil properties with high-throughput microbial community analyses to elucidate microbial responses and microbial-mediated alterations to carbon cycling. While microbial responses to experimental droughts were weak, scant rainfall periods resulted in decreased microbial biomass and activity, and relative abundances of bacterial groups such as Proteobacteria, Verrucomicrobia, and Acidobacteria decreased concomitantly with increases in Actinobacteria, Chloroflexi, and Firmicutes abundance. Soils under exotic plants had increased temperatures, enhanced infiltration during rainfall events, and decreased water retention and labile carbon in comparison to soils under native plants. Higher peaks and more seasonally variable microbial activity were found under exotic plants and, like drought periods, the microbial community shifted towards osmotic stress life-strategies. Relationships found between microbial taxonomic groups and carbon metabolic genes support the interpretation that exotic plants change microbial carbon cycling by altering the soil microclimate and supplying easily decomposed high-quality litter. Soil microbial community responses to drought and exotic plants could potentially impact ecosystem C storage by producing a smaller, more vulnerable C pool of microbial biomass that is prone to increased pulses of heterotrophic respiration.

     
    more » « less
  2. Abstract Questions

    Shrub expansion into alpine ecosystems worldwide raises important questions regarding the influence of shrub encroachment on alpine species diversity. The stress gradient hypothesis (SGH) predicts interactions will be competitive when resources are plentiful and the environment is benign, but that facilitative interactions will dominate when conditions are stressful. We asked howArtemisia rothrockii(sagebrush) encroachment in an arid mountain range is affecting alpine plant species there and how the plant community responds to the experimental removal of sagebrush at three sites along an elevational gradient.

    Location

    The White Mountains, California,USA(37°30′N, 118°10′W).

    Methods

    A shrub removal experiment was established at three elevations (2,900, 3,100 and 3,750 m) to evaluate how sagebrush interacts with alpine and sub‐alpine plant communities.

    Results

    The study sites experienced a strong drought over the 4 yrs of the experiment and plant cover declined overall. However, in the sagebrush removal treatment, cover of co‐occurring species increased at both the high‐elevation and low‐elevation sites, with no differences observed at the mid‐elevation site.

    Conclusions

    We observed the greatest inhibitory effects of sagebrush at high and low elevations, where plants experience the largest temperature and moisture stress, respectively, and no evidence of facilitation anywhere along the elevational gradient. These results demonstrate that while sagebrush has important influences on herbaceous species composition in the White Mountains, they are inconsistent with the classic predictions of theSGH.

     
    more » « less
  3. Abstract

    Declines in grassland diversity in response to nutrient addition are a general consequence of global change. This decline in species richness may be driven by multiple underlying processes operating at different time‐scales. Nutrient addition can reduce diversity by enhancing the rate of local extinction via competitive exclusion, or by reducing the rate of colonization by constraining the pool of species able to colonize under new conditions. Partitioning net change into extinction and colonization rates will better delineate the long‐term effect of global change in grasslands.

    We synthesized changes in richness in response to experimental fertilization with nitrogen, phosphorus and potassium with micronutrients across 30 grasslands. We quantified changes in local richness, colonization, and extinction over 8–10 years of nutrient addition, and compared these rates against control conditions to isolate the effect of nutrient addition from background dynamics.

    Total richness at steady state in the control plots was the sum of equal, relatively high rates of local colonization and extinction. On aggregate, 30%–35% of initial species were lost and the same proportion of new species were gained at least once over a decade. Absolute turnover increased with site‐level richness but was proportionately greater at lower‐richness sites relative to starting richness. Loss of total richness with nutrient addition, especially N in combination with P or K, was driven by enhanced rates of extinction with a smaller contribution from reduced colonization. Enhanced extinction and reduced colonization were disproportionately among native species, perennials, and forbs. Reduced colonization plateaued after the first few (<5) years after nutrient addition, while enhanced extinction continued throughout the first decade.

    Synthesis. Our results indicate a high rate of colonizations and extinctions underlying the richness of ambient communities and that nutrient enhancement drives overall declines in diversity primarily by exclusion of previously established species. Moreover, enhanced extinction continues over long time‐scales, suggesting continuous, long‐term community responses and a need for long‐term study to fully realize the extinction impact of increased nutrients on grassland composition.

     
    more » « less
  4. Abstract Aim

    Climate variability threatens to destabilize production in many ecosystems. Asynchronous species dynamics may buffer against such variability when a decrease in performance by some species is offset by an increase in performance of others. However, high climatic variability can eliminate species through stochastic extinctions or cause similar stress responses among species that reduce buffering. Local conditions, such as soil nutrients, can also alter production stability directly or by influencing asynchrony. We test these hypotheses using a globally distributed sampling experiment.

    Location

    Grasslands in North America, Europe and Australia.

    Time period

    Annual surveys over 5 year intervals occurring between 2007 and 2014.

    Major taxa studied

    Herbaceous plants.

    Methods

    We sampled annually the per species cover and aboveground community biomass [net primary productivity (NPP)], plus soil chemical properties, in 29 grasslands. We tested how soil conditions, combined with variability in precipitation and temperature, affect species richness, asynchrony and temporal stability of primary productivity. We used bivariate relationships and structural equation modelling to examine proximate and ultimate relationships.

    Results

    Climate variability strongly predicted asynchrony, whereas NPP stability was more related to soil conditions. Species richness was structured by both climate variability and soils and, in turn, increased asynchrony. Variability in temperature and precipitation caused a unimodal asynchrony response, with asynchrony being lowest at low and high climate variability. Climate impacted stability indirectly, through its effect on asynchrony, with stability increasing at higher asynchrony owing to lower inter‐annual variability in NPP. Soil conditions had no detectable effect on asynchrony but increased stability by increasing the mean NPP, especially when soil organic matter was high.

    Main conclusions

    We found globally consistent evidence that climate modulates species asynchrony but that the direct effect on stability is low relative to local soil conditions. Nonetheless, our observed unimodal responses to variability in temperature and precipitation suggest asynchrony thresholds, beyond which there are detectable destabilizing impacts of climate on primary productivity.

     
    more » « less
  5. Abstract

    Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change.

     
    more » « less
  6. Abstract

    Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change – fertilisation and herbivore loss – are affected by species pool size and spatial compositional heterogeneity. Fertilisation led to higher rates of local extinction, whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics.

     
    more » « less